Architecture
°ÇÃà Architecture


diagonal length of a rectangular parallelepiped, using the surface area and sum of edge lengths

ÀÛ¼ºÀÚ Uploader : rainbow ÀÛ¼ºÀÏ Upload Date: 2019-03-08º¯°æÀÏ Update Date: 2019-03-11Á¶È¸¼ö View : 494

When the surface area of a rectangular parallelepiped is S and the sum of the lengths of all the edgeis L, the length d of the diagonal line can be obtained as follows.

If the length of each side of the rectangular parallelepiped is a, b and c, those L, S and d can be expressed as follows.

L = 4*(a+b+c)

S = 2*(ab+bc+ca)

d = (a^2+b^2+c^2)^(1/2)

Meantime,

(a+b+c)^2 = a^2+b^2+c^2+2*(ab+bc+ca)

Thus, d can be expressed by L and S as below.

(a^2+b^2+c^2)^(1/2) = (a+b+c)^2 - 2*(ab+bc+ca)

d = (L/4)^2 - S


*** Âü°í¹®Çå[References] ***

d = (L/4)^2 - S
ÀÛ¼ºÀÚÀÇ ¼ö½Ä±×¸²ÀÌ ¾ø½À´Ï´Ù. No picture for this formula
º¯¼ö¸í Variable º¯¼ö°ª Value º¯ ¼ö ¼³ ¸í Description of the variable


¡Ø ÀÌ »çÀÌÆ®´Â ±¤°í¼öÀÍÀ¸·Î ¿î¿µµË´Ï´Ù.

¡Ú ·Î±×ÀÎ ÈÄ ¼ö½ÄÀÛ¼º ¹× Áñ°Üã±â¿¡ Ãß°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¡Ú To make new formula or to add this formula in your bookmark, log on please.


ÄÚ¸àÆ®

´ñ±Û ÀÔ·Â